Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]						
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi						
CRM08	Rev 1.10	EC	21/06/2021			

CONTINUOUS INTERNAL EVALUATION- 2

Dept:EC	Sem / Div:IV A&B	Sub:Analog Circuits	S Code:18EC42			
Date:24/06/2021	Time: 3:00-4:30 pm	Max Marks: 50	Elective:N			
Note: Answer any 2 full questions, choosing one full question from each part.						

Q N	Questions	Marks	RBT	COs			
PART A							
	With a neat circuit diagram and ac equivalent circuit derive the	9	L2	CO1			
	expressions for Rin, Avo, Av and Ro for source follower.						
	A feedback Amplifier has a closed loop gain of 100V/V and is relatively intensive to change in basic amplifier gain. If a negative	6	L2	CO3			
	feedback provides a reduction in Af to 99V/V for a reduction in A to						
	one-tenth its nominal value,						
	i)Find loop gain, nominal value of A, feedback factor B?						
	ii)What will be the closed loop gain if A is increased ten fold?						
	iii)What will be the closed loop gain if $A=\infty$	10	1.2	CO 2			
	Explain the Frequency Response of CS amplifier and Derive the	10	L2	CO2			
	expression for Low frequency response of a common source amplifier. OR						
2 0	Explain the properties of negative feedback amplifiers	10	L2	CO3			
	Explain the Classification of output stages of power amplifers	9	L2 L2	CO3			
	It is desired to design a phase-shift oscillator (Self biased JEFT	6	L2 L3	CO3			
	amplifier) using a JEFT having gm=5000 μ s, rd =40k Ω , and feedback	0		005			
	circuit resistance of $R=10k\Omega$. Select the value of 'C' for oscillator						
	operation at 1 kHz and RD for a gain A=40 to ensure oscillator action.						
	PART B						
	Explain series shunt feedback amplifier and obtain expression for Rin	10	L3	CO3			
	and Ro	7					
	b Explain the internal capacitances of a MOSFET and hence draw the high frequency small signal model of MOSFET		L2	CO1			
	Explain Transformer coupled class A Amplifier and show that Transformer coupled class A Amplifier has maximum efficiency of 50%		L2	CO3			
	OR						
	Explain series series feedback amplifier and obtain expression for Rin and Ro	10	L3	CO3			
	Explain the working of crystal oscillator.A crystal has L=0.4H, C=0.085pF and CM=1pF with R=5K. Find (I) Series Resonant Frequency. (ii) Parallel resonant Frequency and (iii) Find Q-factor of the crystal.	6	L3	CO3			
c	Explain Class B output stage amplifier and derive the expression for power conversion efficiency	9	L3	CO3			

-